叁五范文网 >自我鉴定

数学初中教案模板7篇

教案是我们开展教学工作的重要依据之一,一篇优秀的教案是需要结合自身实际的教学能力和教学内容写的,以下是叁五范文网小编精心为您推荐的数学初中教案模板7篇,供大家参考。

数学初中教案模板7篇

数学初中教案模板篇1

一、教学目标

1、了解二次根式的意义;

2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

3、掌握二次根式的性质和,并能灵活应用;

4、通过二次根式的计算培养学生的逻辑思维能力;

5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。

二、教学重点和难点

重点:

(1)二次根的意义;

(2)二次根式中字母的取值范围。

难点:确定二次根式中字母的取值范围。

三、教学方法

启发式、讲练结合。

四、教学过程

(一)复习提问

1、什么叫平方根、算术平方根?

2、说出下列各式的意义,并计算

(二)引入新课

新课:二次根式

定义:式子叫做二次根式。

对于请同学们讨论论应注意的问题,引导学生总结:

(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?

若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。

(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次

根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。

例1当a为实数时,下列各式中哪些是二次根式?

例2 x是怎样的实数时,式子在实数范围有意义?

解:略。

说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。

例3当字母取何值时,下列各式为二次根式:

分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。

解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。

(2)—3x≥0,x≤0,即x≤0时,是二次根式。

(3),且x≠0,∴x>0,当x>0时,是二次根式。

(4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。

例4下列各式是二次根式,求式子中的字母所满足的条件:

分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。

解:(1)由2a+3≥0,得。

(2)由,得3a—1>0,解得。

(3)由于x取任何实数时都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。

(4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。

数学初中教案模板篇2

一、指导思想:

按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学都能够在此数学学习过程中获得最适合自已发展的广泛空间。通过九年级数学的教学,提供进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维级力和空间想象能力,能够运用所学知识解决简朴的实际问题,培养学生手数学创新意识,良好个性品质以及初步的唯物主义观。

二、教学内容

本学期所教九年级数学包括第一章《一元二次方程》,第二章《定义命题公理与证实》,第三章《相似形》,第四章《解直角三角形》。第五章《概率的计算》。

三、教学目标

知识技能目标:会解一元二次方程:理解定义命题公理并学会运用:掌握相似形的相关知识及运用;会解直解三角形,掌握概率的初步计算方法。

过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。

四、教学措拖

1、教学过程中尽量采取多鼓励、多引导、少批秤的教育方法。

2、教学速度以适应大多学生为主,尽量兼顾后进生,注意整体推进。

3、新课教学中涉及到旧知识时,对其作相应的复习回顾。

4、复习阶段多让学生动脑、动手、通过各种习题、综合试题和模仿试题的训练,使学生逐步认识各知识点,并能纯熟运用。

数学初中教案模板篇3

初中数学教案模板

简易方程(二)一、教学目标(一)知识教学点

1.了解;方程算术解法与代数解法的区别。2.掌握:代数解法解简易方程。(二)能力训练点

1.通过代数解法解简易方程的学习使学生认识问题头脑不僵化,培养其创造性思维的能力。

2.通过代数法解简易方程进一步培养学生运算能力和逻辑思维能力。

(三)德育渗透点

1.培养学生实事求是的科学态度,用发展的眼光看问题的辩证唯物主义思想。

2.渗透化“未知”为“已知”的化归思想。(四)美育渗透点

通过用新的方法解简易方程,使学生初步领略数学中的方法美。二、学法引导

1.教学方法:引导发现法。注意教学中民主意识和学生的主体作用的体现。

2.学生学法:识记→练习反馈 三、重点、难点、疑点及解决办法 1.重点:代数解法解简易方程。

2.难点:解方程时准确把握两边都加上(或减去)、乘以(或除以)同一适当的数。

3.疑点:代数解法解简易方程的依据。 四、课时安排 1课时

五、教具学具准备

投影仪或电脑、自制胶片。六、师生互动活动设计

教师创设情境,学生解决问题。教师介绍新的方法,学生反复练习。

七、教学步骤

(一)创设情境,复习导入 (出示投影1)

引例:班上有37名同学,分成人数相等的两队进行拔河比赛,恰好余3人当裁判员,每个队有多少人?

师:该问题如何解决呢?请同学们考虑好后写在练习本上.学生活动:解答问题,一个学生板演.师生共同订正,对照板演学生的做法,师问:有无不同解法? 学生活动:回答问题,一个学生板演,其他学生比较两种解法.问;这两种解法有什么不同呢?

学生活动:积极思索,回答问题.(一是列算式的解法,二是列方程的解法).师:很好.为了叙述问题方便,我们分别把这两种解法叫做算术解法和代数解法.小学学过的应用题可用算术方法也可用代数方法解.有时算术方法简便,有时代数方法简便,但是随着学习的逐步展开,遇到的问题越来越复杂,使用代数解法的优越性将会体现的越来越充分,因此,在初中代数课上,将把方程的知识作为一个重要的内容来学习.当然,在开始学习方程时,还是要从简单的方程入手,即简易方程.引出课题.[板书]简易方程(二)探索新知,讲授新课

师:谈到方程,同学们并不陌生,你能说明什么叫方程吗? 学生活动:踊跃举手,回答问题。[板书]含有未知数的等式叫方程

接问:你还知道关于方程的其他概念吗? 学生活动:积极思考并回答。[板书]方程的解;解方程

追问:能再具体些吗?即什么叫方程的解?什么叫解方程?并举例说明.学生活动:互相讨论后回答.(使方程左右两边相等的未知数的值叫做方程的解;求方程的解的过程叫解方程,师:好!这是小学学的解方程的方法。在初中代数课上,我们要从另一角度来解,还以上边这个方程为例。

[板书]

学生活动:相互讨论达成共识(合理。因把x=5代入方程3x+9=24,左边=右边,所以x=5是方程的解)

?教法说明】先复习小学有关方程的几个概念和解法,再提代数解法,形成对比,使学生认识到同一问题可从不同角度去考虑,即培养了发散思维。正是因为认识问题的不同侧面,导致学生感到疑惑,这时让学生自己去检验新方法的合理性,不但可消除疑虑,而且还有助于发展学生的创造能力。

师:以前的方法只能解很简单的方程,而后者则可以解较复杂的方程,因此更为重要。为了更好的理解和熟悉这种解法,我们共同做例1。

(三)尝试反馈,巩固练习例1解方程(x/2)-5=11

问:你认为第一步方程两边应加上(或减去)什么数最合适?为什么?

学生活动:思考并回答.(师板书)

问:你认为第二步方程两边应乘以(或除以)什么数最合适?为什么?

学生活动:思考并回答(师板书)解:方程两边都加上5,得(x/2)-5+5=11+5 x/2=16(x/2)*2=16*2 x=32

问:这个结果正确吗?请同学们自己检验.学生活动:练习本上检验并回答问题.(正确)

师:这种新方法解方程时,第一步目的是什么?第二步目的是什么?从而确定出该加上(或减去)怎样的数,该乘以(或除以)怎样的数更合适.学生活动:回答这两个问题.【教法说明】虽然解方程的过程由教师板书,但整个思路是由学生形成的,使新方法在学生头脑中越来越清晰,直到真正认识并掌握它,这样也体现了学生的主体性,由“学会”型向“会学”型转化,对培养学生的思维能力很有帮助.师:上题在我们共同努力下得以解决,下面看你们自己的表现怎样?

例2解方程=10。

学生活动:在练习本上做,一个学生板演.师生共同订正.师:这里虽不要求同学们检验,但今后希望同学们养成自我检查的良好习惯.【教法说明】通过例2的教学训练学生的判断能力及运算能力,树立矛盾转化思想.(四)变式训练,培养能力 (出示投影2)

1.(口答)解下列方程

学生活动:1、2题口答,3、4题在练习本上书写,可互相讨论,3、4题师巡回指导。

?教法说明】1题让学生困难同学回答,增强自信心;2题澄清模糊认识,可充分讨论,让学生各抒已见;3题较1题稍复杂,一是让学生体会新解法的优越性,二是培养学生观察分析解决问题的能力;4题其实也是解方程,目的是开阔学生思路,培养学生勇于探索、大胆求异的创新精神。

(五)归纳小结 (由学生归纳)

1.按照新方法解方程,一般采用下面两点: (1)方程两边都加上(或减去)同一适当的数;(2)方程两边都乘以(或除以)同一适当的数。2.为了保证运算准确,养成检验的习惯。八、随堂练习1.选择题 九、布置作业

(一)必做题:课本第31页a组1.(2)(4)、2.(1)(3)(5)(二)选做题:思考课本b组1、2。十、板书设计 附:简易方程 随堂练习答案 探究活动

甲、乙二人从相距30m的两地同向而行,甲每秒走7m,乙每秒走,如果甲先出发1秒钟后,乙才出发,求甲出发后几秒钟追上乙?

解法(-)设甲出发后x秒追上乙,则甲走的路程为7xm,乙比甲晚1秒钟出发,乙少走1秒钟,此时,乙走的路程为(x-1)m,甲追上乙表示甲比乙多走30m。根据题意列出方程是:7x=(x-1)+30

解得x=47(秒)

答:甲出发后47秒追上乙.解法(二)设甲出发后x秒追上乙,甲先走1秒钟,甲先走了7*1=7m,这样甲追上己只需多走30-7*1=23(m).这时甲、乙二人都走了(x-1)秒,甲走的路程为7(x-1)m,乙走的路程为(x-1)m,乙比甲走的路程少30-7*1=23(m),根据题意列出方程是: 7(x-1)=(x-1)+7(x-1)解得x=47(秒)

答:甲出发后47秒追上乙.解法(三)设已出发后x秒,甲追上乙,因为甲先走1秒,所以甲走了(x+1),乙走了x秒,甲走的路程比已走的路程多30m,依据此等量关系列出方程为:7(x+1)-=30

解得x=46秒

甲走的时间为x+1=47(秒)答:甲出发后47秒追上乙.

数学初中教案模板篇4

教学目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

重点难点:

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学过程:

一、试一试

1.设矩形花圃的垂直于墙的一边ab的长为xm,先取x的一些值,算出矩形的另一边bc的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

2.x的值是否可以任意取?有限定范围吗?

3.我们发现,当ab的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,

对于1.,可让学生根据表中给出的ab的长,填出相应的bc的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当ab的长为5cm,bc的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0t;x p="" t;10)就是所求的函数关系式.t;="" t;x="" 对于3,教师可提出问题,(1)当ab="xm时,bc长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0"

二、提出问题

某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答:

1.商品的利润与售价、进价以及销售量之间有什么关系?

[利润=(售价-进价)×销售量]

2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?

[10-8=2(元),(10-8)×100=200(元)]

3.若每件商品降价x元,则每件商品的利润是多少元?一天可??

售约多少件商品?

[(10-8-x);(100+100x)]

4.x的值是否可以任意取?如果不能任意取,请求出它的范围,

[x的值不能任意取,其范围是0≤x≤2]

5.若设该商品每天的利润为y元,求y与x的函数关系式。

[y=(10-8-x) (100+100x)(0≤x≤2)]

将函数关系式y=x(20-2x)(0t;x

y=-2x2+20x(0t;xt;10)……(1) p="" (0≤x≤2)……(2)

三、观察;概括

1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

(1)函数关系式(1)和(2)的自变量各有几个?

(各有1个)

(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式)

(3)函数关系式(1)和(2)有什么共同特点?

(都是用自变量的二次多项式来表示的)

(4)本章导图中的问题以及p1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。

2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

四、课堂练习

1.(口答)下列函数中,哪些是二次函数?

(1)y=5x+1 (2)y=4x2-1

(3)y=2x3-3x2 (4)y=5x4-3x+1

2.p3练习第1,2题。

五、小结

1.请叙述二次函数的定义.

2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。

六、作业:略

数学初中教案模板篇5

[教学目标]

1、体会并了解反比例函数的图象的意义

2、能列表、描点、连线法画出反比例函数的图象

3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质

[教学重点和难点]

本节教学的重点是反比例函数的图象及图象的性质

由于反比例函数的图象分两支,给画图带来了复杂性是本节教学的难点

[教学过程]

1、情境创设

可以从复习一次函数的图象开始:你还记得一次函数的图象吗?在回忆与交流中,进一步认识函数图象的直观有助于理解函数的性质。转而导人关注新的函数——反比例函数的图象研究:反比例函数的图象又会是什么样子呢?

2、探索活动

探索活动1反比例函数y?

由于反比例函数y?

要分几个层次来探求:

(1)可以先估计——例如:位置(图象所在象限、图象与坐标轴的交点等)、趋势(上升、下降等);

(2)方法与步骤——利用描点作图;

列表:取自变量x的哪些值?——x是不为零的任何实数,所以不能取x的值的为零,但仍可以以零为基准,左右均匀,对称地取值。

描点:依据什么(数据、方法)找点?

连线:怎样连线?——可在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来。

探索活动2反比例函数y??2的图象.x2的图象是曲线型的,且分成两支.对此,学生第一次接触有一定的难度,因此需x2的图象.x

可以引导学生采用多种方式进行自主探索活动:

2的图象的方式与步骤进行自主探索其图象;x

222(2)可以通过探索函数y?与y??之间的关系,画出y??的图象.__

22探索活动3反比例函数y??与y?的图象有什么共同特征?__(1)可以用画反比例函数y?

引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.(即双曲线)反比例函数y?

k(k≠0)的图象中两支曲线都与x轴、y轴不相交;并且当k?0时,图象在第一、第x

数学初中教案模板篇6

教学目标

1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

教学建议

1.知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:

(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.

等都不是代数式.

3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

如:说出代数式7(a-3)的意义。

分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

4.书写代数式的注意事项:

(1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.

如3×a ,应写作3.a 或写作3a ,a×b 应写作3.a 或写作ab .带分数与字母相乘,应把带分数化成假分数,

.数字与数字相乘一般仍用“×”号.

(2)代数式中有除法运算时,一般按照分数的写法来写.

(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.

5.对本节例题的分析:

例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.

例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.

6.教法建议

(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。

(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

7.教学重点、难点:

重点:用字母表示数的意义

难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。

教学设计示例

课堂教学过程设计

一、从学生原有的认知结构提出问题

1、在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?

(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)

(1)加法交换律 a+b=b+a;

(2)乘法交换律 a·b=b·a;

(3)加法结合律 (a+b)+c=a+(b+c);

(4)乘法结合律 (ab)c=a(bc);

(5)乘法分配律 a(b+c)=ab+ac

指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;

(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数

2、(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?

3、若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?

4、(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?

(用1厘米表示周长,则i=4a厘米;用s平方厘米表示面积,则s=a2平方厘米)

此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.

三、讲授新课

1、代数式

单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义

2、举例说明

例1 填空:

(1)每包书有12册,n包书有__________册;

(2)温度由t℃下降到2℃后是_________℃;

(3)棱长是a厘米的正方体的体积是_____立方厘米;

(4)产量由m千克增长10%,就达到_______千克

(此例题用投影给出,学生口答完成)

解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m

例2 说出下列代数式的意义:

解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;

(5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方

说明:(1)本题应由教师示范来完成;

(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等

例3 用代数式表示:

(1)m与n的和除以10的商;

(2)m与5n的差的平方;

(3)x的2倍与y的和;

(4)ν的立方与t的3倍的积

分析:用代数式表示用语言叙述的数量关系要注意:

①弄清代数式中括号的使用;

②字母与数字做乘积时,习惯上数字要写在字母的前面

四、课堂练习

1、填空:(投影)

(1)n箱苹果重p千克,每箱重_____千克;

(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;

(3)底为a,高为h的三角形面积是______;

(4)全校学生人数是x,其中女生占48%?则女生人数是____,男生人数是____

2、说出下列代数式的意义:(投影)

3、用代数式表示:(投影)

(1)x与y的和;

(2)x的平方与y的立方的差;

(3)a的60%与b的2倍的和;

(4)a除以2的商与b除3的商的和

五、师生共同小结

首先,提出如下问题:

1、本节课学习了哪些内容?

2、用字母表示数的意义是什么?

3、什么叫代数式?

教师在学生回答上述问题的基础上,指出:

①代数式实际上就是算式,字母像数字一样也可以进行运算;

②在代数式和运算结果中,如有单位时,要正确地使用括号

六、作业

1、一个三角形的三条边的长分别的a,b,c,求这个三角形的周长

2、张强比王华大3岁,当张强a岁时,王华的年龄是多少?

3、飞机的速度是汽车的40倍,自行车的速度是汽车的1/3,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?

4、a千克大米的售价是6元,1千克大米售多少元?

5、圆的半径是r厘米,它的面积是多少?

6、用代数式表示:

(1)长为a,宽为b米的长方形的周长;

(2)宽为b米,长是宽的2倍的长方形的周长;

(3)长是a米,宽是长的1/3的长方形的周长;

(4)宽为b米,长比宽多2米的长方形的周长

数学初中教案模板篇7

课 题

§2.2.3 配方法(三)教学目标(一)教学知识点

1.利用方程解决实际问题. 2.训练用配方法解题的技能.(二)能力训练要求

1.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型,增强学生的数学应用意识和能力.

2.能根据具体问题的实际意义检验结果的合理性. 3.进一步训练利用配方法解题的技能.

通过学生创设解决问题的方案,来培养其数学的应用意识和能力,进而拓宽他们的思维空间,来激发其学习的主动积极性. 教学重点

利用方程解决实际问题 教学难点

对于开放性问题的解决,即如何设计方案 教学方法 分组讨论法 教具准备

投影片二张 第一张:练习(记作投影片§2.2.3 a)第二张:实际问题(记作投影片§2.2.3 b)教学过程

Ⅰ.巧设情景问题,引入新课

[师]通过上两节课的研究,我们会用配方法来解数字系数的一元二次方程.下面我们通过练习来复习巩固一元二次方程的解法.(出示投影片§2.2.3 a)用配方法解下列一元二次方程:(1)x2+6x+8=0;(2)x2-8x+15=0;(3)x2-3x-7=0;(4)3x2-8x+4=0;(5)6x2-11x-10=0;(6)2x2+21x-11=0.

[师]我们分组来做,第一、三、五组的同学做方程(1)、(3)、(5),第二、四、六组的同学做方程(2)、(4)、(6). [师]各组做完了没有? [生齐声]做完了.

[师]好,我们来交叉改一下,看看哪位同学批改得仔细,哪位同学的方程解得全对.

[生甲]我改的是××同学的,他做的是方程(1)、(3)、(5),方程(1)解对了,答案是x1=-2,x2=-4.解方程(3)时,在配方的时候,他配错了,即 x2-3x-7=0,x2-3x=7,x2-3x+32=7+32 应为(-)2.

[师]很好,这里一次项-3x的系数-3是奇数,所以应在方程两边各加上(-3)的一半的平方,那方程(3)的正确答案是多少呢? [生乙]方程(3)的解为x1= [师]好,继续.

[生丙]方程(5)的二次项系数不为1,所以首先应把方程化为二次项系数是1的形式,然后再应用配方进行求解.××同学解的对,其解为x1=,x2=-.

[生丁]××同学做的是方程(2)、(4)、(6).他解的完全正确,即

方程(2)的解:x1=5,x2=3,方程(4)的解:x1=2,x2=,方程(6)的解:xl=,x2=-11.

[师]利用配方法求解方程时,一定要注意:

①方程的二次项系数不为1时,首先应把它化为二次项系数是1的形式,这是利用配方法求解方程的前提.

②配方法中方程的两边都加上一次项系数一半的平方的前提是方程的二次项系数为1.

另外,大家在利用配方法求解方程时,要有一定的技能.这就??

?373?37.,x2?22要大家不仅要多练,而且还要动脑.尤其是在解决实际问题中.

这节课我们就来解决一个实际问题.

Ⅱ.讲授新课

[师]看大屏幕.(出示投影片§ 2.2.3b)在一块长16 m,宽12 m的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半,你能给出设计方案吗? [师]大家仔细看题,弄清题意后,分组进行讨论,设计具体方案,并说说你的想法. [生甲]我们组 的设计方案如右图 所示,其中花园四 周是小路,它们的 宽度都相等.

这样设计既美观又大方,通过列方程、解方程,可以得到小路的宽度为2 m或12 m.

[师]噢,同学们来想一想,甲组的设计符合要求吗?如果符合,请说明是如何列方程,又如何求解方程的;如果不符合,请说明理由. [生乙]甲组的设计符合要求.

我们可以假设小路的宽度为x m,则根据题意,可得方程(16-2x)(12-2x)= ×16×12,也就是x2-14x-24=0.

然后利用配方法来求解这个方程,即

12 x2-14x+24=0,x2-14x=-24,x2-14x+72=-24+72,(x-7)2=25,x-7=±5,即x-7=5,x-7=-5.

∴x1=12.x2=2.

因此,小路的宽度为2 m或12 m.

由以上所述知:甲组的设计方案符合要求.

[生丙]不对,因为荒地的宽度是12 m,所以小路的宽度绝对不能为12 m.因此甲组设计的方案不太准确,应更正为:花园四周的小路的宽度只能是2 m.

[师]大家来作判断,谁说的合乎实际? [生齐声]丙同学说得有理.

[师]好,一般地来说:在解一元一次方程时,只要题目、方程及解法正确,那么得出的根便是所列方程的根,一般也就是所解应用题的解,而一元二次方程有两个根,这些根虽然满足所列的一元二次方程,但未必符合实际问题.因此,解完一元二次方程之后,不要急于下结论,而要按题意来检验这些根是不是实际问题的解.这一点,丙同学做得很好,大家要学习他从多方面考虑问题.接下来,我们来看其他组设计的方案. [生丁]我们组的设计方案如右图.

我们是以矩形的四个顶点为圆心,以约5.5 m长为半径画了四个相同的扇形,则矩形除四个相同的扇形以外的地方就可作为花园的场地.

因为四个相同的扇形拼凑在一起正好是一个圆,即四个相同扇形的面积之和恰为一个圆的面积,假设其半径为x m,根据题意,可得

πx2=×12×16.

解得x=±9612?≈±5.5.

因为半径为正数,所以x=-5.5应舍去.因此,由以上所述可知,我们组设计的方案符合要求. [生戊]由丁同 学组的启发,我又 设计了一个方案,如右图.

以矩形的对角

线的交点为圆心,以5.5 m长为半径在矩形中间画一个圆,这个圆也可作为花园的场地.

[生己]老师,我也设计了一个方案,图形与戊同学的一样,他是把圆作为花园的场地,而我是把圆以外的荒地作为花园的场地,圆内以备盖房子.

[师]同学们设计的方案都很好,并能触类旁通,真棒.其他组怎么样?

[生庚]我们组 设计的方案如右图. 顺次连结矩形 各边的中点,所 得到的四边形即 是作为花园的场 地.

因为矩形的四个顶点处的直角三角形都全等,每个直角三角形的面积是24 m2(即×6×8),所以四个直角三角形的面积之和为96 m2,则剩下的面积也正好是96 m2,即等于矩形面积的一半.因此这个设计方案也符合要求.

[生辛]我们组设计的方案如下图. 12

图中的阴影部分可作为建花园的场所.

因为阴影部分的面积为96 m2,正好是矩形面积的一半,所以这个设计也符合要求. [生丑]我们组 设计的方案如右图.

图中的阴影部 分可作为建花园的场地.

经计算,它符合要求.

[生癸]我们组的设计方案如下图.

图中的阴影部分是作为建花园的场地. [师]噢,同学们能帮癸组求出图中的x吗? [生]能,根据题意,可得方程 2×(16-x)(12-x)=×16×12,即x2-28x+96=0,x2-28x=-96,x2-28x+142=-96+142,(x-14)2=100,x-14=±10.

∴x1=24,x2=4.

因为矩形的长为16 m,所以x1=24不符合题意.因此图中的x只能为4 m.[师]同学们真棒,通过大家的努力,设计了这么多在矩形荒地上建花园的方案. 1212 接下来,我们再来看一个设计方案.

Ⅲ.课堂练习

(一)课本p55随堂练习1 1.小颖的设计方案如图所示,你能帮助她求出图中的x吗?

解:根据题意,得

(16-x)(12-x)= ×16×12,即x2-28x+96=0.

解这个方程,得 x1=4,x2=24(舍去).

所以x=4.

(二)看课本p53~p54,然后小结.

Ⅳ.课时小结

本节课我们通过列方程解决实际问题,进一步了解了一元二次方程是刻画现实世界中数量关系的一个有效数学模型,并且知道在解决实际问题时,要根据具体问题的实际意义检验结果的合理性.

另外,还应注意用配方法解题的技能.

Ⅴ.课后作业

(一)课本p55习题2.5

1、2

12(二)1.预习内容:p56~p57 2.预习提纲

如何推导一元二次方程的求根公式.

Ⅵ.活动与探究

汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,在一个限速40千米/时以内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场测得甲车的刹车距离为12米,乙车的刹车距离超过10米,但小于12米,查有关资料知,甲种车的刹车距离s甲(米)与车速x(千米/时)之间有下列关系:s甲=0.1x+0.01x2;乙种车的刹车距离s乙(米)与车速x(千米/时)的关系如下图所示.

请你就两车的速度方面分析相碰的原因.

[过程]通过对本题的研究、探讨,让学生体会数学与现实生活紧密相连.

由甲车的刹车距离和车速的关系式s甲=0.1x+0.01x2,又s=12,从而可求得甲

车速度,对乙车而言,从图象上知刹车距离与车速是成正比例函数关

甲系,因而可设为x乙=kx,又其过点(60,15),从而得到k值,由10[结果] 解:对于甲车:

∵甲车刹车距离为12米,根据题意,得 12=0.1x+0.01x2.

解这个方程,得x1=30或x2=-40(舍去),即甲车的车速为30千米/时,不超过限速.

对于乙车:

由图象知,其关系是一个正比例函数,设此函数为x乙=kx ∵经过点(60,15),∴15=60k,∴k=,即此函数解析式为s乙=x 根据题意,得10∴40∴乙车超过限速40千米/时的规定.

∴就速度方面分析,两车相碰的原因在于乙车超速行驶. 板书设计

§2.2.3 配方法(三)

一、实际问题的设计方案: 设计方案一: 设计方案二: 设计方案三:

设计方案四:

二、课堂练习

三、课时小结

四、课后作业

会计实习心得体会最新模板相关文章:

比图形数学中班教案7篇

数学相邻数教案优质7篇

六年级上册数学教案7篇

大班数学相邻数教案7篇

二年级下册数学教案7篇

中班数学比较厚薄教案7篇

七上数学教案推荐7篇

大班数学量的比较教案7篇

小学数学线与角教案7篇

二年级上册数学练习二教案7篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    88057

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。