叁五范文网 >自我鉴定

水的性质教案7篇

教师可以通过教案来规划每堂课的教学过程,当老师准备教案时,他们需要权衡各种因素,如学科知识的深度和广度,以确保课程内容的全面性和适切性,以下是叁五范文网小编精心为您推荐的水的性质教案7篇,供大家参考。

水的性质教案7篇

水的性质教案篇1

教学内容:教科书第60~61页,例1、例2、

练一练,练习十一第1~3题。

教学目标:

1、使学生经历探索分数基本性质的过程,初步理解分数的基本性质。

2、使学生能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象,概括的能力,体现数学学习的乐趣。

教学重点:让学生在探索中理解分数的基本性质。

教学过程:

一、导入新课

1、我们已经学习了分数的有关知识,这节课在已经掌握的知识基础上继续学习。

2、出示例1图。

你能看图写出哪些分数?你是怎样想的?说出自己的想法。

二、教学新课

1、教学例1。

(1)这四个分数,为什么分母不同呢?前两个分数的'分子为什么都是1?

(2)你其中哪几个分数是相等的吗?你是怎么知道这三个分数相等的?

(3)演示验证。

2、教学例2。

(1)取出正方形纸,先对折,用涂色部分表示它的1/2。学生操作活动。

(2)你能通过继续对折,找出和1/2相等的其它分数吗?学生操作活动。交流汇报。对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?(板书)

(3)得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?

(4)观察每个等式中的两个分数,它们的分子、分母是怎样变化的?观察、思考,试着完成填空。在小组中说说你有什么发现?

(5)小结。分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。板书课题:分数的基本性质。

(6)为什么要“0”除外呢?

(7)你能根据分数的基本性质,写出一组相等的分数吗?学生尝试完成。

(8)根据分数和除法的关系,你能用整数除法中商不变的规律来说明分数的基本性质吗?在小组中说一说。

3、完成练一练。

(1)完成第1题。涂色表示已知分数,再在右图中涂出相等部分。说说怎么想的?

(2)完成第1题。独立完成,汇报想法。5到15乘了几?1怎么办?先看哪个数?(分子9)9到1除以几?分母18怎么办?

三、巩固练习

1、完成练习十一第1题。平均分成了多少份?表示多少份?涂色表示。涂色部分还表示几分之几?

2、完成第2题。独立完成,交流想法。

四、课题总结

今天有了什么收获?你认为学习了分数的基本性质有什么作用?在什么时候可能会用到它?

水的性质教案篇2

【教学内容】

人教课标版小学四年级下册第58、59页的内容:小数的性质

【学情分析】

小数的性质是义务教育课程标准实验教科书四年级下册第58、59页的内容。是在学生学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且为后面的小数的大小比较、小数四则计算打下坚实的基础。学生对于整数的知识已经有了较多的了解,对于整数的末尾添上“0”或者去掉“0”,会引起整数大小的变化有了一定的认识。但小数的性质却与整数不一样,在小数的末尾添上0或者去掉“0”,小数的大小不变,因此,整数的这部分知识,会对小数性质的学习产生负面的影响。

【教学目标】

知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质,知道化简小数和改写小数的方法。

过程与方法:培养学生观察、比较、抽象和归纳概括的能力。

情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。

【教学重难点】

重点:理解和掌握小数性质的含义。

难点:小数基本性质归纳的过程。

【教法与学法】

1、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理、自主探究、合作交流让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。

2、让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与教学活动。

3、培养学生共同合作,相互交流的学习方法。

【教学准备】

教师:自作课件

学生:收集的标签彩笔直尺和纸条

【教学过程】

一、创设情境,导入新课

1、师:课前老师让同学们回忆生活,观察商品的标价签,并记录1—2种商品的价格,请谁来汇报一下?

生:2、00元,师:是多少钱呢?生:2元。

生:3、50元。师:是多少钱?生:3元5角

师:夏天的时候同学们都爱吃冷饮,老师了解到校门口左边的商店三色标价是2、5元,右边一家则是2、50元,那你们去买的时候会选择哪一家呢?为什么?

师:为什么2、5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。

板书课题:小数的性质

设计意图:联系生活实际,达到知识的迁移。

二、提出问题、探索新知

1、出示例1:下面请同学们利用直尺和桌面上的三张纸条分别量出0、1米,0、10米和0、100米长的纸条,各打上记号。各小组合作共同完成。

老师巡视并引导学生观察米尺图

2、各小组汇报:结合学生回答,教师板书:

0、1米是1/10米,就是1分米

0、10米是10/100米,就是10厘米

0、100米就是100/1000米,就是100毫米

因为1分米=10厘米=100毫米

所以0、l米=0、10米=0、100米

教师小结:这三个数量虽然各不相同,但表示大小相等、

设计意图:学生根据小数的意义,从“0、l米、0、10米、0、100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。

3、观察比较:教师指着“0、l米=0、10米=0、100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?

根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”。

教师强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简、小数中间的0不能去掉、

师质疑:那整数有这个性质吗?

学生分小组讨论,并举例证明得出结论。

(师强调出小数与整数的区别)

设计意图:把静态的知识结论转化为动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括的能力。

4、练一练:

(1)多媒体出示58页做一做:比较0、30与0、3的大小

师:你认为这两个数的大小怎样?(让学生先应用结论猜一猜)

(2)师:想一下你用什么办法来比较这两个数的大小呢?(给学生独立思考的时间,可以进行小组讨论合作)

(3)在两个大小一样的'正方形里涂色比较。

汇报结论:0、3=0、30

师质疑:小数由0、3到0、30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0、3=0、30。)

设计意图:学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。放手让学生探索、验证,适时引导学生提出问题,并解决问题。

5、小数性质应用、【继续演示课件“小数的性质”】

(1)教学例3:把0、70和105、0900化简、

思考:哪些“0”可以去掉,哪些“0”不能去掉?

105、0900中“9”前面的“0”为什么不能去掉?

(0、70=0、7;105、0900=105、09)

教师强调:末尾和后面不同。

(2)教学例4:不改变数的大小,把0、2、4、08、3改写成小数部分是三位的小数、学生独立完成,全班共同订正。

(0、2=0、200;4、08=4、080;3=3、000)

思考:“3”的后面不加小数点行吗?为什么?

(3)你在哪些地方看到过小数末尾添0的数?(商场的标价上)

三、巩固深化,拓展思维

1、完成59页的做一做。

重点指导学生说一说为什么有些“0”不能去掉和

说一说为什么有些数的末尾添上“0”,原数就发生了变化、

2、挑战自我。

(1)谁能只动三笔,让下面三个数之间划上等号?

6020 = 602 =60200

(2)每人写几个和3、200相等的数、

设计意图:挑战自我的习题留给学生课后去完成,让学生的学习活动从课堂延伸到课后。

四、全课小结

1、这节课你有哪些收获?

2、你对自己或同学有什么评价?

五、布置作业、

完成练习十1—3题。

板书设计:

小数的性质

例1 1分米= 10厘米= 100毫米

从右往左从左往右

0、1米= 0、10米= 0、100米

小数的末尾添上0或者去掉0,小数的大小不变。

0、3= 0、30 =0、300

例2化简小数。

0、70= 0、7 105、0900=105、09

例3不改变数的大小,把下面各数写成三位小数。

0、2=0、200 4、08=4、080 3=3、000

水的性质教案篇3

一、 教材

根据课程标准的要求,基于对教学内容的把握,本课时我确定的教学目标为:

1.理解和掌握分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。

2.通过猜想、验证、归纳、总结等活动,经历分数的基本性质的探究过程,体会举具体事例、数形结合的思考方法,感受抽象、推理的基本数学思想。

3.在自主探究与合作交流的过程中,感受数学知识之间的联系,激发学生探究学习的兴趣。我确定本目标的依据有三点:

一是基于对课程标准的理解。

?义务教育数学课程标准(20xx年版)》在学段目标的第二学段指出学生要“在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程”。

二是基于对教材的认识。

?分数的基本性质》是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的`基础上进行教学的,它是以后学习约分、通分的依据,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。

三是基于对学情的认识。

作为旧课新上,如何让学生在重新学习的过程中对学习活动任然保持浓厚兴趣,从探究活动中得到新的发展,上出数学味,上出新意,我在思考。本节课常规的是创设情境,在情景中提炼出等式,最终形成性质。因此在教学时,我没有从具体的情境入手,而是从思考一连串的问题开始,通过实验、猜想、验证、结论,从等式的验证上升到规律的发现和归纳,经历定律由特殊到一般的归纳推理过程,在这个过程中积累数学经验、渗透数学思想、掌握数学方法。

据此,

我将教学重点确定为:通过猜想、验证、归纳、总结等活动,让学生经历分数的基本性质的探究过程。教学难点确定:理解和掌握分数的基本性质。

二、教法

课程标准指出教师要关注已有的知识经验及认知水平,发挥组织者、引导者、合作者的作用。本节课我综合采用了引导发现法、启发式教学法,直观演示法,组织学生经历实验、猜测、验证、得出结论的过程。

三、说学法

学生是学习的主体,学生的学习活动应该是生动的、活泼的、富有个性的,因此,在本节课教学中,我主要采用观察发现法、动手操作法、举例验证法,引导学生静心倾听、认真操作、积极思考、大胆表达,通过动手实践、自主探究、合作交流等多种方式获得广泛的数学活动经验。

四、说教学过程

本着让学生

“主动参与、乐于探究、学有所得”的理念,结合五年级学生的认知水平和年龄特点,结合教材的编排意图和学情特点,我设计了如下教学环节:1. 联系旧知,质疑引思。 2.自主操作,验证猜想 3.知识应用,巩固提高4.回顾总结,完善认知。

环节一:联系旧知,质疑引思。

“疑是思之始,学之端。”思考这样一连串的问题,目的是唤醒学生已有的知识经验;迅速地点燃孩子们求知欲望;引发学生的数学思考,为主动探究新知识积聚动力。

环节二:操作体验,概括规律

1.观察发现,提出猜想。

通过找与1/2相等的分数,思考证明方法,观察等式,发现规律,于是提出猜想

2.举例操作,验证猜想。

课标指出“学生应当有足够的时间和空间经历观察、实验、猜测、推理、验证等活动的过程”。本节课验证环节,将“分子分母怎样变才使得分数的大小不变”设定为研究的关键点,然后围绕这一关键点让学生展开了操作、感悟、分析、推理等一系列的数学活动,引导学生通过比较全面的大量的例子来验证结论,在观察、实验、猜测、验证的活动中发展合情推理能力。让学生试着用数学的思维去思考,体验如何运用新旧知识间的联系和迁移去分析和解决问题,培养学生好学善思的良好品质。

3.概括性质,深化理解

通过观察算式,经历由特殊到一般的归纳推理,发现分数的基本性质。

4.运用规律,完成例2

尝试运用发现的规律,解决问题。

环节三:知识应用,巩固提高

在有层次的练习过程中,形成技能,发展学生的智力,达成本节课的教学目标,突出重点,突破难点。本节课,我设计了两个层次的练习。一是点对点的基础练习,二是灵活运用所学知识解决生活中实际问题。

环节四:回顾总结,完善认知

通过回顾,梳理所学的知识,提炼数学方法,联系新旧知识,使学生的认知结构得到补充和完善。

有人说的好,教育是一门永无止境的艺术,我知道这节课还有很多不足,恳切的希望各位能给予我更多的宝贵建议,有了你们的帮助我一定收获更多,成长更快。

水的性质教案篇4

教学内容:省编义务教材第十册第91—93页例1、例2。

教学目标:

1、体验分数基本性质的探究过程,建构分数基本性质的意义内涵。

2、沟通分数的基本性质和商不变性质的内在联系,实现新知化归旧知,并与后面约分和通分的学习作好前期孕伏。

3、通过猜想、验证、得出结论这充分自主的数学活动,促进学生学习经验的不断积累。

课前准备:

课件,学具袋一个(线段图纸、长方形、绳子)、探究纸一张

教学过程:

1.创设情境,作好铺垫

出示四分之二后说:老师的信封里有一道算式,这道算式和这个分数的值相等,你们猜这是一道怎样的算式?(除法算式。)你能具体猜出是怎样一道除法算式。(2÷4)

为什么你会猜是一道除法算式?(分数与除法有密切的关系)

除法与分数有什么样的关系?

(黑板上出示:被除数÷除数=)

根据2÷4这道除法算式,每人都试着说一道与它相等的除法算式。(根据学生板书:1÷23÷64÷85÷10100÷……)

为什么你认为100÷与2÷4的商是一样的?(2和4同时乘以50商不变,这是根据商不变性质)

什么是商不变性质?(出示:被除数和除数同时乘以或除以相同的数(0除外),商不变。)

2、迁移猜想,引疑激思

分数与除法有这样的关系,除法中有商不变性质,那你们猜分数中有可能存在着类似的性质吗?(有)你能具体说一说?

交流得出:分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

3、自主探究,验证猜想

也许你们的猜想是正确的,科学家的发现往往也是从猜想开始的,但是只有通过验证得到的结论才是科学的,这节课我们也学着来做一名小数学家。

(1)初步验证

①出示:探究报告单,让学生读要求:

a.同桌合作:两人各写一个分数,将它的分子、分母同时乘以或除以一个相同的数,算出新的分数。

b.选择合理的方法验证所前后两个分数是否相等。

c.填写好探究报告单。

选择探究的

分 数

分子和分母同时乘以或除以

一个相同的数

得到的

分 数

选择的分数与得到的分数是否相等

相等( ) 不相等( )

猜想是否成立

成立( ) 不成立( )

选择的分数与得到的分数是否相等相等()不相等()

猜想是否成立成立()不成立()

*:验证方法可用折纸、画线段图、计算、实物……

②学生合作进行探究。

③全班交流:

a、同桌一起上来,拿好探究报告单及验证材料等。

b、两人合作,一人讲解、一人验证演示。

c、得到结论:

(交流2-3组后)问全班同学:你们得到怎样的结论?(一致通过)

刚才我们通过集体努力用不同的方法、不同的分数验证了我们的猜想是成立的。这就是分数的基本性质,板书:分数的基本性质。(齐读)

4、议论争辩,顿悟创新

读一读分数的基本性质,你认为哪些字词是比较重要的。这里的“相同的数”指的是什么数?为什么要“0除外”?

5、训练技能,激励发展

刚才我们通过自己的猜想、验证得出的这条规律,学习了分数的.基本性质,到底有什么作用呢?让我们一起来体会一下。

(1)练习明目的

根据分数的基本性质,填空。

1/2=()/8=5/()=()/6=7/()

采取师生对数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。

(2)慧眼辩是非

(3)变式练思维

把下面每组中的异分母分数化成同分母分数。

a、3/4,4/7b、5/6,4/9c、3/5,5/8

分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。

(4)竞赛促智慧

①在1—9九个数字中任选一些数字组成大小相等的分数。

可以有:1/2=3/6=43=23=4/6这三组。

并让学生继续往下说,从而得出:任何一个分数与之相等的分数有无数个。

②出示:1/a=7/b(说明:a、b都不是0。)

抢答:a=2、a=3、a=6、b=28、b=56时a或b的值。

连贯口答:a=1、2、3、4、5……时b的值。(渗透正比例)

讨论:a、b之间的关系是怎样的?为什么会存在这样的关系?依据是什么?

6、回顾,掌握方法

今天这节课我们学习的分数的基本性质,回忆一下我们是怎样学习的?

学生可能会回答:

生1:我们是根据“商不变的性质”来学习“分数的基本性质”的。

生2:我们是通过猜测的方法学的。

生3:我们还用验证的方法学习。

……

结果语:是的,这节课,我们利用除法和分数的关系以及商不变性质,猜想出分数的基本性质,并且进行了验证与运用,其实数学知识都是相互联系的,学习数学就要学会利用已有知识,去学习新的知识,这就是学习数学的一把金钥匙。老师把这把金钥匙送给每一位同学。

水的性质教案篇5

教学目标

1.使学生理解并掌握比例的意义和基本性质.

2.认识比例的各部分的名称.

教学重点

比例的意义和基本性质.

教学难点

应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

教学过程

一、复习准备.

(一)教师提问复习.

1.什么叫做比?

2.什么叫做比值?

(二)求下面各比的比值.

12∶164.5∶2.710∶6

教师提问:上面哪些比的比值相等?

(三)教师小结

4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以

用等号连接.

教师板书:4.5∶2.7=10∶6

二、新授教学.

(一)比例的意义(课件演示:比例的意义)

例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:

时间(时)

2

5

路程(千米)

80

200

1.教师提问:从上表中可以看到,这辆汽车,

第一次所行驶的路程和时间的比是几比几?

第二次所行驶的路程和时间的比是几比几?

这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)

2.教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式

80∶2=200∶5或.

3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)

教师提问:什么叫做比例?组成比例的关键是什么?

板书:表示两个比相等的式子叫做比例.

关键:两个比相等

4.练习

下面哪组中的两个比可以组成比例?把组成的比例写出来.

(1)6∶10和9∶15(2)20∶5和1∶4

(3)和(4)0.6∶0.2和

5.填空

(1)如果两个比的比值相等,那么这两个比就()比例.

(2)一个比例,等号左边的比和等号右边的比一定是()的.

(二)比例的基本性质(课件演示:比例的基本性质)

1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)

2.练习:指出下面比例的外项和内项.

4.5∶2.7=10∶6 6∶10=9∶15

3.计算上面每一个比例中的'外项积和内项积,并讨论它们存在什么关系?

以80∶2=200∶5为例,指名来说明.

外项积是:80×5=400

内项积是:2×200=400

80×5=2×200

4.学生自己任选两三个比例,计算出它的外项积和内项积.

5.教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质

板书课题:加上“和基本性质”,使课题完整.

6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

教师板书:

7.练习

应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.

6∶3和8∶50.2∶2.5和4∶50

三、课堂小结.

这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.

四、巩固练习.

(一)说一说比和比例有什么区别.

(二)填空.

在6∶5=30∶25这个比例中,外项是()和(),内项是()和().

根据比例的基本性质可以写成()×()=()×().

(三)根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.

1.6∶9和9∶122.1.4∶2和7∶10

3.0.5∶0.2和 4.和7.5∶1

(四)下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)

2、3、4和6

五、课后作业.

根据3×4=2×6写出比例.

六、板书设计.

水的性质教案篇6

一、教学目标:

1、让学生经历分数基本性质的探究过程,理解和掌握分数的基本性质,初步建立数学模型。

2、利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。

3、培养学生的观察、概括等思维能力及(渗透变与不变)数学学习兴趣。

二、教学重点:

理解掌握分数的基本性质,它是约分,通分的依据

三、教学难点:

理解和掌握分数的基本性质,初步建立数学模型。

四、教学准备:

课件、正方形的纸。

五、教学设计过程:

(一)迁移旧知.提出猜想

1、回忆旧知

猜信封:老师手上的信封里有一个数、一道算式,我抽出其中一张,谁能猜出另一张是什么?出示:2÷3

你为什么这样猜呢?引导学生回忆分数与除法的关系。媒体演示:分数与除法的关系:

被除数÷除数=

谁能说一道与2÷3商一样的除法算式?学生一边说,教师一边板书算式。你为什么认为这些算式的商是一样的?引导学生回忆什么是商不变的性质?媒体出示:商不变的性质:

被除数和除数同时乘或除以相同的数(零除外),商不变。

2、提出猜想:

既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)

(二)验证猜想,建构新知

a、看图分类

下面是一组相等的正方形,请写出每个图形阴影部分所表示的分数,并把相同的分数分在一起。

b、讨论方法

师:你是怎么判断它们相等的?

师:它们相等,用算式可以怎么表示?

1/2=2/4=4/8

c、研究规律

师:这些相等的式子,除了我们从图上看到的大小相等之外,还有没有其他的秘密呢?

利用研究卡进行研究。

确定的研究对象

分子和分母同时乘上或者

除以一个相同的数

得到的分数

研究对象与得到的分数相等吗?

相等( )不相等( )

猜想是否成立?

成立( )不成立( )

充分利用学生的生成资源:揭示课题:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。(板书)

师:为什么要0除外?

师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)

练习:2/3=( )/18、6/21=2/( )、3/5=21/( )、27/39=( )/13

师:这里面什么变了,什么不变?(生:分子和分母变了,但分数的大小不变)

师:分子与分母是怎样变化的?(同时乘或除以相同的数,0除外)

师:分数的基本性质与商不变性质有什么联系?

d、质疑完善

3/4=3×( )/4×( )

师:括号中可以填哪些数?

预设:可以填无数个数

师:如果只用一个数来表示,填什么数好?

预设:字母

师:这个字母有什么特殊要求吗?(0除外)

得到一个初级的数学模型。3/4=3×x/4×x(x≠0)

让学生打开课本进行阅读、内化,并想一想还有什么问题吗?

(三)练习升华

1、5/7=( )/35、3/4=9/( )、3/( )=12/20、16/24=( )/3

2、把5/6和1/4都化为分母为12而大小不变的分数。

3、把2/3和3/4都化为分子为6而大小不变的`分数。

4、把2/5的分子加上2以后,要使分数的大小不变,分母应加上多少?

5、和哪一个分数大,你能讲出判断的依据吗?

(四)总结延伸

师:这节课学了什么?

师:如果一个分数为a/b,你能用一个式子来表示分数的基本性质吗?

a/b=a×x/b×x(x≠0)或a/b=a÷x/b÷x(x≠0)(板书)

六、作业p87-1、2

板书设计

分数基本性质

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

a/b=a×x/b×x(x≠0)或a/b=a÷x/b÷x(x≠0)

6÷8

3÷4

12÷16

水的性质教案篇7

【教学内容】

【教学目标】

?教学重点】重点:理解小数的意义,掌握小数的性质和小数点位置移动引起小难点 、数大小变化的规律。

难点:用“四舍五入”法按要求求出小数近似数。

【教学过程】

一、揭示课题

这节课我们来复习小数的意义和性质。通过复习进一步理解小数的意义,掌握小数的性质以及小数点位置移动引起小数大小变化的规律,能把较大数改写成“万”或“亿”作单位的数,并能按要求求出小数的近似数。

二、复习小数的意义

1、做期末复习第8题(1)、(2)、(3)。

(1)学生在书上填写,集体订正。说一说0.5、0.023的意义。

(2)说一说小数的意义是什么?

问:一位小数、两位小数、三位小数……各表示几分之几的数?

2、(1)在小数里,小数部分最高位是哪一位?从小数点起,向右依次有哪些数位?每个数位上计数单位是什么?

(2)填空。

0.1里面有( )个0.01。 10个0.001是( )。

10个0.1是( )。 0.1里有( )个0.01。

三、复习小数的性质和小数的大小比较

1、练习。

(1)把下面小数化简。

4.700 16.0100 8.7100 14.00

(2)不改变数的大小,把下面的数写成两位小数。

4.2 13.121

①学生做,指名板演,集体订正。

②问:做题时是根据什么来做的?什么是小数的性质?

2、做期末复习第9题,第1竖行两题。

(1)学生在书上做,指名板演,集体订正。

(2)让学生说一说怎样比较两个小数的大小。

3、做期末复习第10题。

(1)先把这些数排列起来,找出最大、最小数,并和其他数一起,写好序号。

0.1 0.012 0.102 0.12 0.021

(2)按要求从小到大排列。

四、复习小数点位置移动引起小数大小变化的规律

1、做期末复习第8题(4)、(5)。

(1)小数点向右移动,原来的数就扩大,向右移动一位、两位、三位……,原数有什么变化?小数点向左移动,原来的数就缩小,向左移动一位、两位、三位……原数有什么变化?

问:要把一个数扩大(或缩小)10倍、100倍、1000倍……小数点应怎样移动?

(2)学生练习,指名回答。

2、练习。

(1)把1.8扩大100倍是( )。( )扩大1000倍是6.21。

(2)把( )缩小100倍是0.021。( )缩小1000倍是6.21。

五、复习求小数的近似数和整数的改写

1、把下面小数精确到百分位。

0.834 2.786 3.895

(1)学生做,指名板演。

(2)让学生说一说怎样求一个小数的近似数。

2、(1)把下面各数改写成“万”作单位的数。

486700521000

(2)把下面各数改写成“亿”作单位的数。

460000000 7189600000

学生在练习本上做,指名板演,说一说怎样把一个较大数改写

成“万”或“亿”作单位的数。

3、把下面各数改写成“万”作单位的数,并保留一位小数。

67100209500

(1)学生在练习本上做,指名板演。

(2)比较改写成“万”或“亿”作单位的数和求一个小数的近似数时要注意什么?

4、做期末复习第9题剩下的两题。

(1)比较25万和0.25亿大小,可以把25扩大10000倍,0.25扩大1亿倍。得到两个整数再比较大小。

(2)学生练习,集体订正。

(3)小结:把一个数改写成“万”或“亿”作单位的数,只要在“万”位或“亿”位后面点上小数点,去掉小数点后面的0,再在后面添上“万”字或“亿”字,反过来,一个以“万”或“亿”作单位的数,要改写成原来的整数,只要把它扩大1万倍或1亿倍就可以

了。

5、做期末复习第11题。

学生在书上做,并说明理由。

六、全课总结

这节课复习了什么内容?

怎样的数可以用小数表示?小数的性质是什么?小数点位置移动引起小数大小变化有什么规律?我们可以怎样比较小数的大小?

【作业设计】

1、0.45表示( )。

2、把6.956 6.965 6.659 9.665 5.669 按从小到大排列是( )。

3、把6712098600改写成“万”作单位的数是( )万,保留一位小数是( )万;改写成“亿”作单位的数是( )亿,保留一位小数是( )亿。

4、在○里填“”、“”或“=”。

16.36○16.63 0.36万○3600

0.97○1.01 0.23亿○2100万

5、100千克稻谷可出大米76千克,平均每千克稻谷出大米多少千克?

10000千克稻谷可出大米多少千克?

会计实习心得体会最新模板相关文章:

水的旅行读后感优秀7篇

关于珍惜水的演讲稿优质7篇

关于珍惜水的演讲稿模板7篇

小学生关于水的演讲稿最新7篇

关于水的小学生演讲稿模板7篇

描写水的作文1000字8篇

水的污染调查报告6篇

水的故事800字作文5篇

水的智慧演讲稿8篇

写关于水的作文8篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    94774

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。