为了避免在活动中出错,我们一定要将活动教案制定完善,我们依据教案调整教学步骤,下面是叁五范文网小编为您分享的蒙氏数学乘法板教案5篇,感谢您的参阅。
蒙氏数学乘法板教案篇1
圆柱的体积练习课
教学目标
1.能够运用公式正确地计算圆柱的体积和容积。
2.初步学会用转化的数学思想和方法,解决实际问题的能力。
3.渗透转化思想,培养同学们的自主探索意识。
教学重点
掌握圆柱体积的计算公式。
教学难点
灵活应用圆柱的体积公式解决实际问题。
教学过程
一、复习
1.复习圆柱体积的推导过程
长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即v=sh。
2.复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。
二、解决实际问题
1.练习三第7题。
学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。
2.练习三第5题。
(1)指导学生变换公式:因为v=sh,所以h=v÷s。也可以列方程解答。
(2)学生选择喜爱的方法解答这道题目。
3.练习三第8题。
(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为米的圆柱。
(2)在充分理解题意后学生独立完成,集体订正。
4.练习三第9、10题。
(1)学生独立审题,完成9、10两题。
(2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式v=sh)
(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。利用这个底面积再求出另一个圆柱的体积。
三、布置作业
完成“一课三练”的相关练习。
蒙氏数学乘法板教案篇2
一、教学目标:
1、理解除法是乘法的逆运算;
2、掌握除法法则,会进行有理数的除法运算;
3、经历利用已有知识解决新问题的探索过程。
二、教学重点和难点
教学重点:有理数的除法法则
教学难点:理解商的符号及其绝对值与被除数和除数的关系
三、教学过程
(一)、学前准备
1、师生活动
1)、小明从家里到学校,每分钟走50米,共走了20分钟。
问小明家离学校有1000米,列出的算式为50×20=1000.
2)放学时,小明仍然以每分钟50米的速度回家,应该走20分钟。
列出的算式为1000=20
从上面这个例子你可以发现,有理数除法与乘法之间的关系互为逆运算
(二)、合作交流、探究新知
1、小组合作完成
再相互交流、并与小学里学习的乘除方法进行类比与对比,归纳有理数的除法法则:
1)、除以一个不等于0的数,等于乘这个数的倒数。
2)、两数相除,同号得正,异号得负,并把绝对值相加减,0除以任何一个不等于0的数,都得0.
2、运用法则计算:
(1)(-15)(-3);(2)(-12)(一);(3)(-8)(一)
3、师生共同完成p34例5.
(三)练习:p35
四。课堂小结
通过这节课的学习,你的收获是:
1)、除以一个不等于0的数,等于乘这个数的倒数。
2)、两数相除,同号得正,异号得负,并把绝对值相加减,0除以任何一个不等于0的数,都得0.
五。作业布置
1、计算
(1)(+48)(+6);(2);
(3)4(-2);(4)0(-1000)。
2、计算。
(1)(-1155)[(-11)(+3)(-5)];(2)375
1、p39第1、2、3、4题
(1) 两数相乘,同号得正,异号得负,并把绝对值相乘;
(2) 任何数同0相乘,都得0;
(3) 几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;
(4) 几个数相乘,有一个因数为0时,积为0。
有理数的乘法满足交换律、结合律和乘法对加法的分配律,即:
a·b=b·a;
(a·b)·c=a·(b·c);
(a+b)·c=a·c+b·c。
蒙氏数学乘法板教案篇3
教学目标:
1.巩固乘法的意义,进一步体会乘法与加法的关系。
2.让学生根据乘法意义解决实际问题,培养学生应用所学知识解决问题的能力。
3.在练习中体会到成功的快乐。
教学重点:
采用多种方式巩固乘法的意义。
教学难点:
采用多种方式巩固乘法的意义。
教具学具:
课件
教学过程:
一、情境导入
师:同学们,前两节课,我们又认识了一种新的运算,是什么?(板书出来)
你对乘法有了哪些了解呢?这节课我们来练习有关乘法的知识。
二、探究新知
1.基本训练
师:请同学们开火车读出乘法算式。
师:学生读乘法算式,注意不把乘读做乘以。
师:请同学们看图独立填空。
师:说一说你是怎么想的?注意数清楚一组有几个,有这样的几组?
师:自己独立完成填空。
师:比较(1)和(2)有什么相同?有什么不同?
师:看图自己填空。
师:注意单位名称是个。
2.巩固练习
师:自己先画一画,然后填一填。
师:先写出算式,再自己读一读。
师:注意几个几相加一般可以写成两个乘法算式,特殊的像:2个2相加、3个3相加,因为两个乘数相同,这样的只能写出一个乘法算式。
师:下面这些加法算式,有的可以直接写成乘法算式,自己先做一做,然后和同桌内说说自己的想法。
师:能直接写成乘法算式的加法式子有什么共同的特点?
师:自己完成下面各题,注意运算顺序。
师:说一说上面这些题在计算的时候应该注意点儿什么?
小结:同级运算按照从左往右的顺序计算,如果有小括号的算式要先算小括号里
的运算。
三、拓展延伸
师:连一连
师:这道题中有没有不能连线的?
师:3+3+5和4+6,没有连线,为什么?是的,这两个加法算式不能用乘法算式表示。
师:想一想一个乘法算式能写成几个加法算式?
师:一个乘法算式一般能写成两个加法算式,特殊的像:44,55,这样的两个乘数相同的乘法算式,只能写出一个加法算式。
师:自己先画一画,然后和同学交流一下。
师:可以画出2个3或者3个2,都能用32表示;可以画5个4或者4个5都可以用54表示。
蒙氏数学乘法板教案篇4
教学内容:
九年义务教育苏教版小学数学第七册第81-83页例1、例2和练一练,练习十七第1-4题。
教学要求:
1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。
2、培养学生观察、比较、分析、综合和归纳、概括等思维能力。
3、增强合作意识,激发学生学习数学的兴趣。
教学过程:
一、猜谜引入
1、猜谜:弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。
生:(积极举手,低声喊)纽扣。
师:你为什么会想到是纽扣?
生:因为纽扣的位置扣错了,衣服穿出去就很难看,会让人笑话。
师:纽扣交换了位置,就会产生笑话,我们刚学了加法的运算定律,也和交换位置有关。将加法交换律说给同学们听听。
2、提问:用字母如何表示加法交换律、结合律呢?
适时板书:a+b=b+a a+b+c=a+(b+c)
3、设问:乘法有没有类似的规律?今天我们就来学习乘法的一些运算定律。(板书课题)
[评析:用谜语拉开学习的序幕,激发学生学习的兴趣,活跃了课堂气氛,让学生在轻松的环境中开始学习。以复习加法交换律和结合律作为教学的起点,为学生的探索规律作好了知识铺垫。]
二、猜测验证
1、猜一猜:乘法可能有哪些运算定律?
生1:乘法可能有交换律。
生2:乘法可能有结合律。
生3:
2、提问:乘法是否具有你们猜测的规律呢?怎样确认自己的猜测?看看哪个小组能完成这个光荣而又有意义的任务!(要求每人都把自己的想法介绍给自己的合作伙伴)
3、学生分组研究,教师巡视。(及时参与学生的讨论,寻找教学资源)
[评析:提出与旧知相关联的问题,让学生产生疑问、猜想,有效地激发了学习动机。]
4、交流。
(1)生1:我们小组经过讨论认为乘法有交换律。比如:35二53,016=160等等。两个乘数的位置变了,但它们的积不变。
生2:我们也是找了两个数,将它们相乘,发现两个乘数的位置变了,但它们的结果是相等的。
生3:我们小组也认为乘法有交换律,比如我们班有4个小组,每个组有8人,求一共有多少人?可以列成算式:48=32,也可以用84=32。这就说明4乘8等于8乘4。因此,乘法和加法一样,也有交换律。
提问:有没有不同意见?指名让刚才说乘法没有交换律的学生发言。
生:我开始以为乘法和加法不一样,可是,我用数举例后发现乘法也有交换律,比如3006=6300。
提问:你能用自己的语言描述一下乘法交换律吗?
生:两个数相乘,交换乘数的位置,积不变。
师:书上也有关于乘法交换律内容的叙述,让我们来看看。学生齐读。
师:和你们说的有什么不同?
生1:我们说的是乘数,但书上说的是因数。
生2:书上曾讲过乘数又叫因数,所以我们说交换乘数的位置,积不变也是对的。
师:会用字母表示吗?板书:ab=ba)。
电脑出示练习十七第2题。
师:请你判别一下,有没有运用乘法交换律?并说明理由。
[评析:放手让学生去探索规律,并通过小组合作想办法予以确认,这样不仅充分激发了学生学习的积极性,而且使学生体会了发现新规律的方法。
(2)生4:我们发现乘法也有结合律。如:(32)4=3(24)。
生5:我们也同意这种观点。我们是用应用题来说明的。比如:有6个盒子,每个盒子里有4枝钢笔,每枝钢笔5元,这些钢笔一共值多少元?可以用645=120(元),还可以用6(45片=120(元),它们的结果一样。
生6:我们是用算式来说明的,如:(3467)23=34状6723)。
提问:同学们能用自己的语言描述一下乘法结合律吗?
生7:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
师:你说得很准确,有什么好方法帮助记忆?
生8:我把加法结合律里的加换成乘,把和换成积,其余的不变。
生9:我还发明了一种好的记忆方法,用手势表示。(边说边演示)用三个手指代表三个数,其中两个手指靠在一起,表示先把前两个数相乘,第三个手指靠过来表示再和第三个数相乘它等于先把后两个手指靠在一起,再把第一个手指靠过来。
师:这个记忆方法确实很好,我们大家一起来试一试。师:怎样用字母表示乘法结合律?板书:(ab)c=a(bc)
[评析:乘法结合律与交换律相比,用语言完整地表述有一定难度。教师引导学生交流各人总结规律时的想法,不仅帮助学生规范了数学语言,而且为学生展示自身才能创造了足够的空间。]
5、比较加法运算定律和乘法运算定律。
师:我们学习了加法、乘法运算定律,你觉得它们有哪些相同、不同的地方?
生1:加法交换律和乘法交换律都要交换位置,不同的是,一个在加法里运用,另一个在乘法里运用。
生2:我觉得加法和乘法的运算定律很相似,只要记住其中一个,就能想出另外一个。
[评析:缘起加法交换律,再回到加法交换律,将两者进行比较,让学生感受到知识之间的内在联系。]
三、运用
1、回想一下,在我们的学习中有没有得到过乘法交换律和结合律的帮助?
生:我们验算乘法时就应用了乘法的交换律。
2、基本练习。
3、发展练习。利用乘法的交换律和结合律,写出所有和下面算式相等的式子。
869=( )
[评析:练习的层次鲜明,目标明确; 促进学生构建新的知识网络。]
四、小结。(略)
蒙氏数学乘法板教案篇5
三年级笔算除法集体备课教案
北师大乌海附校 张茹兰
教学目标: 1.知识目标:
使学生在理解算理的基础上,初步学会一位数除两位数,商是两位数的笔算方法。2.能力目标:
进一步培养学生的计算能力,动手操作能力和初步概括能力。3.情感目标:
感受数学在生活中的重要应用,增加学习数学的信心。
教学重点与难点:
重点:一位数除两位数,商是两位数的笔算方法。难点:让学生理解算理,掌握除法算式的演算格式。
教学过程:
一、沟通旧知,建立联系 1.口算
600÷6 27÷3 240÷8 160÷4 2.笔算 9÷3 37÷9
二、创设情景,导入新课
1.出示p19植树情境图,让学生说图意。
2.引导观察:图中告诉我们哪些信息?根据这些信息可以提出什么问题?怎样列式?1(根据学生的回答师板演)42÷2 52÷2
3.师:42÷2等于多少(生:42÷2=21)你是怎么想的?
(生:40÷2=20 2÷2=1 20+1=21)
同学们会口算出答案,那么怎样用竖式计算呢?(揭示课题)板书:一位数除两位数。
三、自主探索,领悟算法 1.教学例1 42÷2=21
(1)用竖式计算,你们会吗?试试看 学生独立计算后,反馈
(2)比较一下,你喜欢哪一种算法?说说理由。
学生发表意见:(学生多数会喜欢地一种算法,简单、竖式短,很少有学生喜欢第二种也就是课本例题的形式)
师:其实第二种方法有自己的优势,它能让大家很清楚地看出计算过程。
(3)师边用电脑演示边讲解:笔算除法的计算顺序和口算一样,要从被除数的最高位除起。请哪位用第二种方法做的同学上来讲解一下。(师配合补充)(4)让学生质疑
(还会有一部分学生会提出第一种竖式也很清楚地看出计算过程.)师:现在就请同学们用自己喜欢的方法列竖式算52÷2 2.教学例2 :52÷2(1)学生独立计算后反馈。
(2)你们同意哪一种算法?
学生讨论后得出:第一种是先口算出26的,应该用第二种方法才正确。(3)师:让我们借助小棒来验证(师生共同摆小棒,师边演示边讲解)
52÷2也就是把52根小棒(5捆和2根)平均分成2份。先把5捆平均分成2份,每份是2捆(20),还余1捆;再把多余的1捆拆开与2根合并是12根也平均分成2份,每份是6根,加起来共分得26根,所以 52÷2=26
师指第二个竖式,被除数十位上余下的“1”,这个1是怎么来的?表示多少? 指商个位上的 “6”,这个6是怎样得来的?同桌互相说一说。
(4)我们再看一看电脑是怎样算的?(电脑演示)谁愿意当小老师把电脑演算的过程再说给大家听听?(指名学生叙述计算过程)
(5)比较例1和例2笔算竖式的区别,强调:笔算除法时,如果十位上除后有余数怎么办?余数和除数有什么联系?(6)指导看书质疑
3.练习反馈 p20 做一做 1 4.引导概括总结:从哪一位除起?商怎样写?被除数十位上除后有余数怎么办?每次除得的余数和除数有什么联系?
会计实习心得体会最新模板相关文章: